Robust variable selection in partially varying coefficient single-index model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Varying-coefficient single-index model

In this paper, the varying-coefficient single-indexmodel (VCSIM) is proposed. It can be seen as a generalization of the semivaryingcoefficient model by changing its constant coefficient part to a nonparametric component, or a generalization of the partially linear single-indexmodel by replacing the constant coefficients of its linear part with varying coefficients. Based on the local linear met...

متن کامل

Varying-coefficient single-index signal regression

Article history: Received 26 September 2014 Accepted 6 February 2015 Available online 28 February 2015

متن کامل

Efficient estimation and model selection for single-index varying-coefficient models

The single-index varying-coefficient models include many types of popular semiparametric models, i.e. single-index models, partially linear models, varying-coefficient models, and so on. In this paper, we first establish the semiparametric efficiency bound for the single-index varying-coefficient model, and develop an estimation method based on the efficient estimating equations. Although our m...

متن کامل

Variable Selection for Partially Linear Varying Coefficient Transformation Models with Censored Data

In this paper, we study the problem of variable selection for varying coefficient transformation models with censored data. We fit the varying coefficient transformation models by maximizing the marginal likelihood subject to a shrinkage-type penalty, which encourages sparse solutions and hence facilitates the process of variable selection. We further provide an efficient computation algorithm ...

متن کامل

New Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By

The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Statistical Society

سال: 2015

ISSN: 1226-3192

DOI: 10.1016/j.jkss.2014.05.002